De novo discovery of serotonin N-acetyltransferase inhibitors.
نویسندگان
چکیده
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) is a member of the GCN5 N-acetyltransferase (GNAT) superfamily and catalyzes the penultimate step in the biosynthesis of melatonin; a large daily rhythm in AANAT activity drives the daily rhythm in circulating melatonin. We have used a structure-based computational approach to identify the first druglike and selective inhibitors of AANAT. Approximately 1.2 million compounds were virtually screened by 3D high-throughput docking into the active site of X-ray structures for AANAT, and in total 241 compounds were tested as inhibitors. One compound class, containing a rhodanine scaffold, exhibited low micromolar competitive inhibition against acetyl-CoA (AcCoA) and proved to be effective in blocking melatonin production in pineal cells. Compounds from this class are predicted to bind as bisubstrate inhibitors through interactions with the AcCoA and serotonin binding sites. Overall, this study demonstrates the feasibility of using virtual screening to identify small molecules that are selective inhibitors of AANAT.
منابع مشابه
Retinal melatonin production: role of proteasomal proteolysis in circadian and photic control of arylalkylamine N-acetyltransferase.
PURPOSE Dynamic day-night changes in melatonin synthesis are regulated by changes in the activity of serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase [AA-NAT]). Similarly, a light-induced decrease in AA-NAT activity at night rapidly suppresses melatonin synthesis. The purpose of the current study was to test the hypothesis that in vivo changes of AA-NAT activity in chicken reti...
متن کاملMechanism-based inhibition of the melatonin rhythm enzyme: pharmacologic exploitation of active site functional plasticity.
Serotonin N-acetyltransferase is the enzyme responsible for the diurnal rhythm of melatonin production in the pineal gland of animals and humans. Inhibitors of this enzyme active in cell culture have not been reported previously. The compound N-bromoacetyltryptamine was shown to be a potent inhibitor of this enzyme in vitro and in a pineal cell culture assay (IC(50) approximately 500 nM). The m...
متن کاملIntegrated Membrane Processes (EDR-RO) for Water Reuse in the Petrochemical Industry
The objective of this work was to apply a hybrid process, including electrodialysis reversal (EDR) and reverse osmosis (RO) to the treatment of petrochemical wastewater in order to obtain process water for reuse. A water balance was carried out to defne the main water consumers and the process step that could receive the produced water. Additionally, toxicity assays wer...
متن کاملIndoleamine analogs as probes of the substrate selectivity and catalytic mechanism of serotonin N-acetyltransferase.
Serotonin N-acetyltransferase (arylalkylamine N-ace-tyltransferase (AANAT)) catalyzes the reaction of serotonin (or tryptamine) with acetyl-CoA to form N-acetylserotonin (or N-acetyltryptamine) and is responsible for the melatonin circadian rhythm in vertebrates. This study evaluates a series of indoleamine analogs as alternate substrates of AANAT. 3-Indolepropylamine and 3-indolebutylamine wer...
متن کاملDiscovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach.
This work describes an integrated approach of de novo drug design, chemical synthesis, and bioassay for quick identification of a series of novel small molecule cyclophilin A (CypA) inhibitors (1-3). The activities of the two most potent CypA inhibitors (3h and 3i) are 2.59 and 1.52 nM, respectively, which are about 16 and 27 times more potent than that of cyclosporin A. This study clearly demo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medicinal chemistry
دوره 50 22 شماره
صفحات -
تاریخ انتشار 2007